Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Theranostics ; 13(15): 5266-5289, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908730

RESUMO

Immunoadjuvants, as an indispensable component of tumor vaccines, can observably enhance the magnitude, breadth, and durability of antitumor immunity. However, current immunoadjuvants suffer from different issues such as weak immunogenicity, inadequate cellular internalization, poor circulation time, and mono-functional bioactivity. Methods: Herein, we construct Fe3+-Shikonin metal-phenolic networks (FeShik) nanomedicines as immunogenic cell death (ICD) stimulants and multifunctional immunoadjuvants for tumor vaccination. The multifunctionality of FeShik nanomedicines is investigated by loading ovalbumin (OVA) as the model antigen to construct OVA@FeShik nanovaccines or 4T1 tumor cell fragment (TF) as homologous antigen to construct TF@FeShik nanovaccines. In vitro examinations including GSH responsive, •OH generation, colloid stability, cellular uptake, cytotoxicity mechanism of ferroptosis and necroptosis, ICD effect, the promotion of DC maturation and antigen cross-presentation were studied. In vivo observations including pharmacokinetics and biodistribution, antitumor effect, abscopal effect, immune memory effect, and biosafety were performed. Results: The presence of FeShik nanomedicines can significantly prolong the blood circulation time of antigens, increasing the bioavailability of antigens. Upon phagocytosis by tumor cells, FeShik nanomedicines can disassemble into Fe2+ and Shikonin in response to tumor microenvironments, leading to ICD of tumor cells via ferroptosis and necroptosis. Consequently, ICD-released autologous tumor cell lysates and pro-inflammatory cytokines not only stimulate DC maturation and antigen cross-presentation, but also promote macrophage repolarization and cytotoxic T lymphocyte infiltration, resulting in the activation of adaptive immune responses toward solid tumors. Conclusion: In a word, our FeShik supramolecular nanomedicines integrate bioactivities of ICD stimulants and immunoadjuvants, such as eradicating tumor cells, activating antitumor immune responses, modulating immunosuppressive tumor microenvironments, and biodegradation after immunotherapy. Encouraged by the diversity of polyphenols and metal ions, our research may provide a valuable paradigm to establish a large library for tumor vaccination.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Adjuvantes Imunológicos , Compostos Férricos , Morte Celular Imunogênica , Nanomedicina , Distribuição Tecidual , Neoplasias/tratamento farmacológico , Antígenos , Imunoterapia , Ovalbumina , Vacinação , Linhagem Celular Tumoral , Microambiente Tumoral
2.
ACS Nano ; 17(15): 14475-14493, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37466500

RESUMO

Nanovaccine-based immunotherapy has been considered as a major pillar to stimulate the host immune system to recognize and eradicate tumor cells as well as establish a long-term immune memory to prevent tumor relapse and metastasis. However, the weak specificity and low cross-presentation of antigens, as well as the immunosuppressive microenvironments of tumor tissues, are still the major obstacles on exerting the therapeutic performance of tumor nanovaccines sufficiently. Herein, we design and construct cytosine guanine dinucleotide (CpG) oligodeoxynucleotide (ODN)-loaded aluminum hydroxyphosphate nanoparticles covered by Fe-Shikonin metal-phenolic networks (MPNs) (Alum-CpG@Fe-Shikonin NPs) as personalized in situ nanovaccines for antitumor immunity. Upon internalization by tumor cells, the shell of Fe-Shikonin MPNs will disassemble into Fe2+ and Shikonin to elicit the immunogenic cell death of tumor cells through ferroptosis and necroptosis. Then, dying tumor cell-released autologous tumor cell lysates will be absorbed by Alum NPs and codelivered with CpG ODN to professional antigen-presenting cells temporally and spatially to activate multistep cascade antitumor immune responses, including dendritic cell maturation, antigen cross-presentation, natural killer cell and cytotoxic T lymphocyte infiltrations, and tumor-associated macrophage repolarization. Benefiting from the synergistic effects of Alum NPs, CpG ODN, and Fe-Shikonin MPNs, our Alum-CpG@Fe-Shikonin NPs exhibit drastic cytotoxicity and accurate selectivity on eradicating primary tumor, strong abscopal effect on inhibiting distant tumor, and a long-term immune memory effect on preventing tumor metastasis and recurrence. Because our report provides a feasible strategy to in situ make full use of autologous tumor cell lysates, which present an entire spectrum of the patient's personal epitopes without complicated ex vivo processes, such as extraction, purification, and sequencing, it may promote the development of personalized nanovaccines for antitumor immunity.


Assuntos
Vacinas Anticâncer , Ferroptose , Neoplasias , Humanos , Necroptose , Neoplasias/terapia , Imunoterapia , Antígenos , Microambiente Tumoral
3.
J Environ Sci (China) ; 130: 223-233, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37032038

RESUMO

Sulfadiazine (SD) is a common antibiotic administered to treat bacterial infections in livestock, and its fate and migration are greatly affected by dissolved organic matter (DOM). The soil infiltration system [a typical low-impact development (LID) facility] can significantly alter DOM properties during runoff pollution, thus affecting the complexation of SD with DOM. Here, the binding characteristics of different DOM components and SD in the soil infiltration system were explored using spectroscopic techniques (excitation-emission matrices, parallel factor analysis, and synchronous fluorescence spectroscopy). Combined with the weakening of DOM fluorescence intensity and 78.63% reduction in mean SD concentration following treatment, synchronous degradation may have occurred. The binding sequence of SD and DOM fluorophores was further explored using two-dimensional correlation spectroscopy. Effluent DOM showed greater sensitivity to SD and more binding sites than influent DOM. Moreover, hydrophobic protein-like substances exhibited higher log KM values than other fluorescent components, indicating that protein-like components play significant roles in SD complexation. The soil percolation system improved the complexation stability and binding sequence of fulvic-like substances. Thus, SD-DOM can be intercepted and degraded using LID facilities to reduce the risk of SD in aquatic environments.


Assuntos
Matéria Orgânica Dissolvida , Substâncias Húmicas , Substâncias Húmicas/análise , Sulfadiazina , Solo/química , Espectrometria de Fluorescência/métodos , Análise Fatorial
4.
Environ Res ; 220: 115224, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36626948

RESUMO

A storm-drain inlet is an important link in the transport of microplastic pollutants in urban rainwater runoff. In three functional districts (agricultural, commercial, and residential) from Beijing South 2nd Ring Road to South 6th Ring Road, microplastics in storm-drain inlet sediments were analyzed for abundance and characteristics. The abundance of microplastics in the collected samples ranged from 1121 ± 247 items kg-1 to 7393 ± 491 items kg-1. Among the sample areas, the commercial area had the greatest abundance (11094 items kg-1), while the agricultural area had the lowest (833 items kg-1). The microplastics in the samples were mainly fragments, accounting for 50.4%. Microplastics of less than 1 mm accounted for 74.8%. The color of microplastics was diverse, with colored MPs accounting for 26% and transparent ones for 47.8%. Most of the polymers detected were PET, PS, and PP, which are the most commonly used polymers. Overall, the results provide baseline data on microplastic pollution and its associated risks, in addition to guidelines for controlling runoff pollution.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Pequim , Baías , Sedimentos Geológicos , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Demografia
5.
ACS Appl Mater Interfaces ; 14(33): 37540-37552, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-35944147

RESUMO

Ferroptosis has been considered as a promising pathway to overcome apoptosis-induced tumor chemoresistance. However, the antitumor efficacy of ferroptosis-inducing agents is still limited because of the complexity and diversity of tumor microenvironments. Herein, we demonstrate a triple ferroptosis amplification strategy for tumor therapy by associating iron-based nanocarriers, ferroptosis molecular drugs, and H2O2-producing enzymes. Fe(III)-Shikonin (FeShik) metal-polyphenol-coordinated networks are employed to load a ferroptosis inducer of sorafenib (SRF) inside and glucose oxidase (GOx) outside, thus producing SRF@FeShik-GOx supramolecular nanomedicines (SNs). After delivering into glutathione (GSH)-overexpressed tumor cells, FeShik will disassemble and release Fe2+ to induce cell death via ferroptosis. At the same time, GOx executes its catalytic activity to produce an acid environment and plenty of H2O2 for stimulating •OH generation via the Fenton reaction. Moreover, SRF will suppress the biosynthesis of GSH by inhibiting system Xc-, further deactivating the enzymatic activity of glutathione peroxidase 4 (GPX4). Up-regulation of the oxidative stress level and down-regulation of GPX4 expression can dramatically accelerate the accumulation of lethal lipid peroxides, leading to ferroptosis amplification of tumor cells. The current strategy that utilizes ferroptosis-inducing agents as both nanocarriers and cargoes provides a pathway to enhance the efficacy of ferroptosis-based tumor therapy.


Assuntos
Ferroptose , Linhagem Celular Tumoral , Compostos Férricos , Glutationa/metabolismo , Peróxido de Hidrogênio , Nanomedicina , Naftoquinonas , Sorafenibe
6.
Environ Sci Pollut Res Int ; 29(30): 45314-45327, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35143007

RESUMO

Effluent organic matter (EfOM) contains a large number of substances that are harmful to both the environment and human health. To avoid the negative effects of organic matter in EfOM, advanced treatment of organic matter is an urgent task. Four typical oxidants (H2O2, PS, PMS, NaClO) and UV-combined treatments were used to treat micro-contaminants in the presence or absence of EfOM, because the active radical species produced in these UV-AOPs are highly reactive with organic contaminants. However, the removal efficiency of trace contaminants was greatly affected by the presence of EfOM. The degradation kinetics of two representative micro-contaminants (benzoic acid (BA) and para chlorobenzoic acid (pCBA)) was significantly reduced in the presence of EfOM, compared to the degradation kinetics in its absence. Using the method of competitive kinetics, with BA, pCBA, and 1,4-dimethoxybenzene (DMOB) as probes, the radicals (HO·, SO4-·, ClO·) proved to be the key to reaction species in advanced oxidation processes. UV irradiation on EfOM was not primarily responsible for the degradation of micro-contaminants. The second-order rate constants of the EfOM with radicals were determined to be (5.027 ± 0.643) × 102 (SO4-·), (3.192 ± 0.153) × 104 (HO·), and 1.35 × 106 (ClO·) (mg C/L)-1 s-1. In addition, this study evaluated the production of three radicals based on the concept of Rct, which can better analyze its reaction mechanism.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Peróxido de Hidrogênio , Cinética , Compostos Orgânicos , Oxirredução , Raios Ultravioleta , Purificação da Água/métodos
7.
Biosci Rep ; 39(11)2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31661547

RESUMO

Objective To determine the effect of ropivacaine on peripheral neuropathy in diabetic rats and its possible mechanism. Methods Forty-eight Sprague-Dawley rats were randomly divided into six groups: nondiabetic control group, nondiabetic group A (0.25% ropivacaine), nondiabetic group B (0.75% ropivacaine), diabetic control group (diabetic peripheral neuropathy (DPN) +artificial cerebrospinal fluid), diabetic group A (DPN+0.25% ropivacaine), and diabetic group B (DPN + 0.75% ropivacaine), with eight rats in each group. Within an hour of the last administration, the sciatic motor nerve conduction velocity (MNCV) of each group was measured, and the morphological changes of rat sciatic nerve were observed by HE, Weil's staining and electron microscopy. The expression of transient receptor potential vanilloid (TRPV1) in the spinal cord dorsal horn of rats was analyzed by immunohistochemistry, and the expression of Calcitonin gene-related peptide (CGRP) protein in the spinal cord was analyzed by Western blot. Results Compared with the nondiabetic control group, elevated blood glucose, decreased weight and reduced average mechanical withdrawal threshold (MWT), additionally, the sciatic nerves showed significantly slowed conduction velocity (both P<0.001) and damaged pathological structure, the expression of TRPV1 and CGRP were decreased (both P<0.001) in the diabetic groups. Compared with the diabetic control group, down-regulation of TRPV1 and CGRP in spinal cord was significant for the diabetic groups A and B treated with 0.25 and 0.75% ropivacaine, the higher concentration of ropivacaine correlated with a greater change. Conclusion Ropivacaine can significantly block sciatic nerve conduction velocity in DPN rats in a concentration-dependent manner, which may be related to the expression of the TRPV1-CGRP pathway.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Neuropatias Diabéticas/tratamento farmacológico , Ropivacaina/farmacologia , Transdução de Sinais/fisiologia , Canais de Cátion TRPV/metabolismo , Animais , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/metabolismo , Neuropatias Diabéticas/metabolismo , Regulação para Baixo/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Nervo Isquiático/metabolismo , Medula Espinal/metabolismo , Estreptozocina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA